Exceptional service in the national interest

Climate Adaptation Through Collaborative Modeling: Examples from the Rio Grande and Western Interconnection

Vincent Tidwell Earth Systems Department

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Collaborators

- Howard Passell
- Len Malczynski
- Tom Lowry
- Jesse Roach
- Beth Richards
- Marissa Reno
- Peter Kobos
- Will Peplinski
- Geoff Klise
- Ron Pate
- Barbie Moreland
- Stephanie Kuzio
- Ray Finley
- Erik Webb

THE UNIVERSITY OF

The University of New Mexico

THE UNIVERSITY OF TEXAS AT AUSTIN

Resource Planning Challenge

Climate Variability/Change

The Need

- Learn to speak the same language:
 - Each person brings unique information and experience to the process.
- - No single person has the answer.
 - Need to develop a shared basis for decision making.

Integrative/Interdisciplinary Modeling

- System management,
 - High resolution,
 - Detailed physics,
 - Focused scope, and
 - Time intensive.
- System planning,
 - Low resolution
 - Scale appropriate physics,
 - Broad scope, and
 - Interactive.

Fostering a Environment of Collaboration

- **Process of engaging** decision-makers and stakeholders in:
 - Model development, and
 - Decision analysis.
- Purpose of broad input includes:
 - Expand knowledge base,
 - Structure group thinking/discussion,
 - Stimulate group learning, and
 - Ultimately lead to improved advocacy.

Visual/Interactive Environment for Analysis

- Broadly accessible
 - PC based
 - User friendly interfaces
 - Computations in seconds to minutes
- Provides interactive environment for scenario testing

Sandia Nationa

People must be more afraid of the future than changes to the status quo

Example: MRG State Water Planning

- Three county planning region
 - Bernalillo
 - Sandoval
 - Valencia
- Total population of ~750,000 including Albuquerque, Rio Rancho, Belen, Bernalillo and Los Lunas

Sandia National Laboratories

Planning Objectives

- 1. What is the region's available water supply?
- 2. What is the region's future water demand?
- 3. How will the region balance supply with demand?
 - What actions can be taken?
 - Which are acceptable to the community?
 - How can they be implemented?

Planning horizon of 50 years!

Model Development Process

- Assembled a "Cooperative Modeling Team" including members from:
 - Each Water Assembly constituency group,
 - Middle Region Council of Governments (MRCOG), and
 - Utton Transboundary Resources Center, UNM
- Team meets every other week to:
 - Conceptualize model components,
 - Identify external sources of expertise and data, and
 - Review the model
- Community engagement
 - Expose community to model
 - Public forums,
 - Educational venues, and
 - Community events
 - Interactions with the professional community

MRG Operations Planning

- Develop a decision support tool that is consistent with and complimentary to the Upper Rio Grande Water Operations Model (URWOM).
 - The primary purpose of the tool is to provide a platform for rapid scenario screening, and
 - Educate and engage the public and decision makers in water operations decision-making and planning.

Operations Model for the Upper Rio Grande

Operations Model for the Upper Rio Grande 🛅

Stochastic Reservoir Storage

Use the model to run 1000, 100 year long climate sequences based on 400 years of tree ring data:

Water Leasing Market Experiments

You are Cash Farmer 1 on Reach 1

What do you want to do?

Submit

ALL TRANSACTIONS FOR EXPERIMENT

Player	Action	Player	Actual Units	Price	Price per AF	
Cash Farmer 5	>>	Cash Farmer 1	1	\$8	\$8	
Cash Farmer 6	**	Env.	1	\$5	\$5	
Cash Farmer ō	>>	Env.	1	\$ 4	\$4	
Cash Farmer 6	~~	Cash Farmer 8	1	\$2	\$2	
Clash Flarmar 9	>>	Uiban	1	\$8	\$8	v

YEAR ROUND			TIME LEFT	
1976	May of Y	ear l	03:05	
CURRENT P	AYOFF			
Water Balance (B)		4.35AF	Min. AF to get yield 0.6	
Water Bala	nce Value (V)	\$0.0		
Trac	ding Cash (0)	\$10.0	Refresh me	
Year-end Earnings (C+V)		\$10.0	Previous Round Earnings	
BIDS AND	OFFERS (d	lick on link ta) sell or buy)	
Reach	Player	Click to Sell	Click to Buy	
1 Cas	h Farmer 1			

1	Cash Farmer 3	0.7 AF @ \$4.00 (\$5.71/AF)
1	Cash Farmer Z	
2	Pecan Farmer 1	
2	Urban	
2	Cash Farmer 5	
2	Cash Farmer 4	
з	Pecan Farmer 2	
3	Cash Farmer 7	
з	Cash Farmer 6	
4	Pecan Farmer 3	
4	Cash Farmer 8	
5	Cash Farmer 9	0.79 AF @ \$8.00 (\$10.11/AF)
5	Cash Farmer 10	
0	Environmental	1.20 AF (@ \$7.00 (\$5.50/AF)

Sandia National Water Leasing Market Experiments

Laboratories

Decision Insight into Stakeholder Conflict

Serious Game Interface

Water Wars Serious Game

- SimCity style game
- Built on Intel's Opensim gaming environment
- SNL's integrated model serves as the "physics" to the game interface
- Game is served over the web
- Game provides automated data capture on stakeholder behavior
- Game play controlled to expose desired action
- Game modes:
 - Multi player
 - Man against machine
 - Hybrid

Acequias vs. Climate Change and Urban Growth

Acequias vs. Climate Change and Urban Growth

Sandia National Laboratories

Energy and Water in the Western and Texas Interconnections

Sandia Nationa

Sandia National Laboratories

Project Objectives

- Reduce the water footprint of electric power production in western North America:
 - Develop tools for quantitative assessment of the energy-water nexus,
 - Engage stakeholders across the energy-water spectrum, and
 - Evaluate water implications of alternative interconnection-wide transmission expansion scenarios.

Project Partners

- Sandia National Laboratories
 - Vincent Tidwell
 - Barbie Moreland
 - Howard Passell
- Argonne National Laboratory
 - John Gasper
 - John Veil
 - Chris Harto
- Electric Power Research Institute
 - Robert Goldstein
- National Renewable Energy Laboratory
 - Jordan Macknick
 - Robin Newmark
 - Daniel Inman
 - Kathleen Hallett
- Idaho National Laboratory
 - Gerald Sehlke
 - Randy Lee
- Pacific Northwest National Laboratory
 - Mark Wigmosta
 - Richard Skaggs
 - Ruby Leung
- University of Texas
 - Michael Webber
 - Carey King

EPRI

ELECTRIC POWER RESEARCH INSTITUTE

National Renewable Energy Laboratory

Pacific Northwest

Transmission Planning

- WECC and ERCOT are conduction long-range transmission planning (20 yrs.)
 - Siting of new power plants
 - New transmission capacity

The North American Electric Reliability Corporation Regions

Source: North American Energy Reliability Corporation.

Power Plant Siting Decisions

- West-wide objectives
 - Minimize cost
 - Maximize reliability
 - Maximize transmission capacity utilization
 - Limit exposure to policy change
 - Minimize stress over water
- Power plant siting criteria
 - Fuel type
 - Cooling type
 - Capacity
 - Location
 - Water source

Operational water consumption factors for electricity generating technologies

Source: Macknick et al. 2011

ries

Key Water Sources

O Potable Water

- Unappropriated surface water
- Appropriated surface water (rights transfers)
- Groundwater

Non-Potable Water

- Municipal/Industrial wastewater
- Shallow brackish water
- Sea Water

Relative Availability and Cost

Water Availability

Wastewater Metric

Brackish Groundwater Metric

Change in Demand, Present - 2030

Water for Development

Unappropriated Water Sources Only

Availability - Demand, 2030

All Water Sources

Availability - Demand, 2030

Relative Cost of Water

Potable Groundwater Cost

Wastewater Cost

Appropriated Surface Water Cost

Brackish Groundwater Cost

Long Term Planning Tool (LTPT)

Water Supply Curves

Water Database Exchange (WaDE)

- Use Web Services to transfer data
- Data Stay at the Source (i.e. the states)
- Provide transparent link between state data and integrated water metrics
 - Link to metadata
 - Changes in state data are automatically reflected in metrics

Collaborative Modeling

- Learning to speak the same language:
 - Integrated/interdisciplinary modeling,
 - Environment of collaboration,
 - Visual/interactive platform for analysis, and
 - Motivation.

Collaborative Modeling Community

- Conducted three conferences
- Produced published proceedings and book
- Tools of the trade:
 - Best practices,
 - Metrics of success,
 - Practitioners list/project survey.

COMPUTER AIDED DISPUTE RESOLUTION (CADRe) WORKSHOP Notes Survey Santia National Santia San

Albuquerque, New Mexico September 13-14, 2007

Sandia National

Vincent Tidwell vctidwe@sandia.gov http://energy.sandia.gov/